

Abstracts

Fabrication of MOD-derived YBCO films on [001]LaAlO₃ and their application to $\lambda/4$ CPW SIR BPFs

A. Sanada, M. Kimura, T. Yamamoto and I. Awai. "Fabrication of MOD-derived YBCO films on [001]LaAlO₃ and their application to $\lambda/4$ CPW SIR BPFs." 2002 Transactions on Microwave Theory and Techniques 50.12 (Dec. 2002 [T-MTT] (Special Issue on 2002 International Microwave Symposium)): 2856-2861.

Chemically derived epitaxial thin films of YBa₂Cu₃O₇ (YBCO) are fabricated on [001]LaAlO₃ substrates by the metalorganic-deposition (MOD) process, which has advantages of high quality, nonvacuum, low-cost, and large-scale production of high-T_c superconducting films. The MOD-derived YBCO films have a sharp transition at the critical temperature (90.4 K) and a high-quality film with a surface resistance of 0.13 m Ω (30 K, 9.98 GHz) is obtained. As a microwave application, simple and compact bandpass filters (BPFs) using $\lambda/4$ coplanar-waveguide stepped-impedance resonators are demonstrated on the YBCO films. A two-stage Chebyshev BPF of center frequency of 5.731 GHz, bandwidth of 135 MHz, and insertion loss of 0.29 dB with little input power dependency in a power range less than 10 dBm is realized on the film.

[Return to main document.](#)